Class III beta-tubulin is constitutively coexpressed with glial fibrillary acidic protein and nestin in midgestational human fetal astrocytes: implications for phenotypic identity.

نویسندگان

  • Eduarda Dráberová
  • Luis Del Valle
  • Jennifer Gordon
  • Vladimíra Marková
  • Barbora Smejkalová
  • Louise Bertrand
  • Jean-Pierre de Chadarévian
  • Dimitri P Agamanolis
  • Agustin Legido
  • Kamel Khalili
  • Pavel Dráber
  • Christos D Katsetos
چکیده

Class III beta-tubulin isotype (betaIII-tubulin) is widely regarded as a neuronal marker in developmental neurobiology and stem cell research. To test the specificity of this marker protein, we determined its expression and distribution in primary cultures of glial fibrillary acidic protein (GFAP)-expressing astrocytes isolated from the cerebral hemispheres of 2 human fetuses at 18 to 20 weeks of gestation. Cells were maintained as monolayer cultures for 1 to 21 days without differentiation induction. By immunofluorescence microscopy, coexpression of betaIII-tubulin and GFAP was detected in cells at all time points but in spatially distinct patterns. The numbers of GFAP+ cells gradually decreased from Days 1 to 21 in vitro, whereas betaIII-tubulin immunoreactivity was present in 100% of cells at all time points. beta-III-tubulin mRNA and protein expression were demonstrated in cultured cells by reverse-transcriptase-polymerase chain reaction and immunoblotting, respectively. Glial fibrillary acidic protein+/beta-III-tubulin-positive cells coexpressed nestin and vimentin but lacked neurofilament proteins, CD133, and glutamate-aspartate transporter. Weak cytoplasmic staining was detected with antibodies against microtubule-associated protein 2 isoforms. Confocal microscopy, performed on autopsy brain samples of human fetuses at 16 to 20 gestational weeks, revealed widespread colocalization of GFAP and betaIII-tubulin in cells of the ventricular/subventricular zones and the cortical plate. Our results indicate that in the midgestational human brain, betaIII-tubulin is not neuron specific because it is constitutively expressed in GFAP+/nestin+ presumptive fetal astrocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sphere formation and expression of neural proteins by human corneal stromal cells in vitro.

PURPOSE To demonstrate the presence of corneal stromal precursors that express neural markers in vitro. METHODS To isolate sphere-forming cells, human corneal stromal cells were subjected to a reaggregation-free neurosphere assay in medium containing methylcellulose gel matrix. To promote differentiation, the isolated sphere colonies were plated in wells with medium containing fetal bovine se...

متن کامل

GPR56 is highly expressed in neural stem cells but downregulated during differentiation.

The G-protein-coupled receptor 56 (GPR56) plays important roles in brain development and tumorigenesis. cDNA data suggest that GPR56 has potential to become a neural stem cell (NSC) or neural progenitor cell (NPC) marker. However, expression of GPR56 protein in human NSC/NPCs was not explored. Using specific antibodies and immunochemistry, we showed that GPR56 was highly expressed in nestin-pos...

متن کامل

Rapid Induction of Neural Differentiation in Human Umbilical Cord Matrix Mesenchymal Stem Cells by cAMP-elevating Agents

Human umbilical cord matrix (hUCM) is considered as a promising source of mesenchymal stem cells (MSCs) due to several advantages over other tissues. The potential of neural differentiation of hUCM-MSCs is of great interest in the context of treating neurodegenerative diseases. In recent years, considerable efforts have been made to establish in vitro conditions for improving the different...

متن کامل

P 104: Effects of Human Neural Stem Cells in Cure Neuroinflammation of Traumatic Brain Injury

Traumatic brain injury (TBI) is defined as an external mechanical injury to the brain. Neuroinflammation plays a vital role in the pathophysiology of TBI. Microglia and astrocytes play a central role in the initiation and regulation of inflammation. Numerous pro-inflammatory mediators including cytokines, chemokines, reactive oxygen species (ROS) and nitric oxide (NO) released by microglia. In ...

متن کامل

Multilineage Potential of Stable Human Mesenchymal Stem Cell Line Derived from Fetal Marrow

Human bone marrow contains two major cell types, hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). MSCs possess self-renewal capacity and pluripotency defined by their ability to differentiate into osteoblasts, chondrocytes, adipocytes and muscle cells. MSCs are also known to differentiate into neurons and glial cells in vitro, and in vivo following transplantation into the bra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuropathology and experimental neurology

دوره 67 4  شماره 

صفحات  -

تاریخ انتشار 2008